
Forward-Backward Semiclassical Calculation of Spectral Line Shapes: I2 in a Rare Gas
Cluster

Oliver Ku1hn
Institut für Chemie, Physikalische und Theoretische Chemie, Freie UniVersität Berlin,
Takustr. 3, 14195 Berlin, Germany

Nancy Makri*
School of Chemical Sciences, UniVersity of Illinois, 601 S. Goodwin AVenue, Urbana, Illinois 61801, and
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation,
48 Vassileos Constantinou AVenue, Athens, Greece 11635

ReceiVed: June 7, 1999; In Final Form: July 19, 1999

The forward-backward semiclassical representation introduced by Makri and Thompson (Chem. Phys. Lett.
1998, 291, 101-109.) is employed to evaluate dipole correlation functions for electronic transitions of molecules
in clusters or the condensed phase. The method is applied to the Xf B transition of an iodine molecule in
a host of argon atoms. In this case, where the spectrum is dominated by the short-time dynamics of the
system, a factorization of the stability matrix entering the semiclassical expression of the propagator provides
an excellent approximation, substantially reducing the computational cost.

1. Introduction

The microscopic description of condensed phase dynamics
has provided a challenge over the past two decades. An exact
quantum mechanical description of such processes as photoin-
duced reactive (photodissociation) and nonreactive (solvation)
dynamics remains out of reach, as the numerical effort for
solving the multidimensional Schro¨dinger equation grows
exponentially with the number of coupled degrees of freedom.
The alternative very appealing path integral description is
plagued by the so-called sign problem which amounts to the
inability of stochastic sampling methods to handle the integration
of oscillatory functions.

In view of these difficulties inherent in quantum mechanical
treatments of complicated many-body Hamiltonians, simplified
models of the environment provide an attractive alternative. A
popular description of many condensed phase processes is based
on system-bath models. Here, the molecular system, i.e., a
molecule in solution or in a solid state matrix, is mapped onto
a low (one- or two-) dimensional system interacting with a bath
which consists of uncoupled harmonic oscillators (see, for
example, ref 1). The microscopic information about the bath
and its interaction with the system is replaced by the spectral
density function, a quantity which is often approximated by
means of classical molecular dynamics simulations. Given the
simplified system-bath Hamiltonian, the ensuing dynamics can
be obtained either perturbatively2-4 or exactly using numerical
path integral methods.5-12 Recent work has analyzed the
conditions for validity of the system-bath description.13 Clearly,
the drawback in these formulations is the loss of microscopic
information as a consequence of the mapping procedure. This
has motivated efforts toward methods for dealing with large
systems in full dimensionality, the most popular of which
involve time-dependent mean field approximations,14-16 mixed

quantum-classical17-19 and surface hopping schemes,20-25 Gauss-
ian wavepacket ideas,26,27and semiclassical approximations.28-49

In addition, significant progress has been made in the direction
of using the results of equilibrium path integral calculations via
analytic continuation50-53 and maximum entropy methods54,55

or centroid density ideas56-61 to deduce dynamical information.
For recent reviews the reader is referred to refs 62 and 63.

In close analogy with the path integral situation,64 Monte
Carlo integration of the semiclassical propagator suffers from
a phase cancellation problem due to its oscillatory character. A
number of elegant methods for dealing with the semiclassical
sign problem based on filtering procedures38,39 or linearized
approximations41-43 have met with considerable success. An
alternative, more rigorous approach44-49 is based on the
combined treatment of the forward and backward time evolution
operators entering the influence functional or a correlation
function. The forward-backward semiclassical dynamics (FBSD)
method has the advantage that most of the rapid oscillations
cancel and one is left with a smooth integrand.

In the present contribution we employ the FBSD scheme in
the context of the spectroscopy of electronic transitions in the
condensed phase. In section II we give a brief account of the
theoretical apparatus. As phase cancellation is minimal in FBSD
calculations, the most severe obstacle toward applying the
method to large systems appears to be the computation of the
prefactor, which scales as the third power of the number of
atoms involved. We thus explore a simple factorization which
substantially reduces the required computational effort associated
with integrating the stability matrix. The specifics of the line-
shape calculation are discussed in section III along with the
numerical results that we obtained. The paper is finally
summarized in section IV.

II. Theory

We focus on spectroscopic experiments described in terms
of two electronic states, labeled g and e, which are coupled by
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the electromagnetic radiation field. Adopting the conventional
classical treatment of the radiation field and the dipole ap-
proximation, the total Hamiltonian is written as

Hereq andp are Cartesian coordinates and momenta for the
multidimensional system of interest,E(t) is the external electric
field, andµge(q) is the dipole operator. Optical spectroscopy in
weak external fields is conveniently described by employing a
perturbation expansion of the time evolution operator with
respect to the field (see, for example, ref 65). This results in
expressions for the linear and nonlinear optical response
functions in terms of dipole-dipole correlation functions. For
instance, the linear absorption line shape normalized to unit area
is given by the Fourier transform

where the dipole-dipole correlation function is

HereUg andUe are the time evolution operators of the ground
and excited potential surfaces, respectively,Fg is the initial
density operator prior to excitation, and the trace is taken with
respect to the nuclear degrees of freedom. Assuming a thermal
distribution of the molecular system of interest, the initial density
is given by the Boltzmann operator,

where Z is the canonical partition function andâ ) 1/kBT.
Invoking the Condon approximation and settingµge ) 1, the
correlation function takes the form

In the condensed phase the calculation of correlation functions
of the type shown in eq 2.3 poses severe numerical difficulties
unless one can resort to simple system-bath descriptions like
the Brownian oscillator model which allows for an exact
evaluation of (2.3) by using a cumulant expansion.13 Although
such mappings are justified in condensed phase situations under
conditions that favor the validity of the linear response ap-
proximation, they are clearly inadequate for describing processes
involving a few strongly interacting degrees of freedom such
as those encountered in medium size clusters. The present article
aims at describing a rigorous semiclassical methodology for
dealing with the spectroscopy of such systems, treating the
potential interactions in full dimensionality.

The semiclassical propagator in the coordinate representation
can be obtained by applying the stationary phase approximation
to the path integral.66,67The result, first obtained by Van Vleck28

by a different method, involves a phase equal to the action along
classical trajectories connecting the initial and final points and
a prefactor which amounts to contributions from quadratic
fluctuations about a classical path. The endpoint representation
is not useful for the purpose of performing numerical calcula-
tions as the determination of the relevant trajectories requires
the solution of a double ended boundary value problem. This
numerical difficulty is overcome in initial value representations
of time correlation functions which replace the integration over

final coordinates by one involving initial momenta30 or invoke
cellular discretizations34 or coherent state representations.32 In
these formulations, the classical trajectories are specified by their
initial conditions in phase space. A number of successful
applications to small model35,36and chemical systems39,49,68have
demonstrated the high accuracy of the semiclassical approxima-
tion as well as some of its limitations. In addition, semiclassical
ideas have been successfully combined with quantum-classical
approaches to treat polyatomic systems.69-71 Multidimensional
calculations require integration by Monte Carlo methods which
(because of the oscillatory phase present in the semiclassical
integrand) are plagued by a sign problem very similar to that
encountered in real-time path integration. Even though a few
successful calculations employing filtering procedures38,39 or
linearization approximations41,42 have been reported, rigorous
semiclassical calculations in large systems have in the past been
considered unfeasible.

In previous attempts to develop a semiclassical representation
of (2.5) and its obvious generalization to nonlinear spec-
troscopies the forward and backward propagation has been
treated separately while the integrals associated with switching
between electronic states that appear in higher order terms were
performed within the stationary phase approximation.72-75

In ref 72 this procedure was combined with a harmonic
expansion around the center of the classical orbits of the forward
and backward trajectories in the spirit of Gaussian wave packet
and cellular dynamics34 with application to an electronic two-
level system coupled to a single nuclear coordinate. Spencer
and Loring74 treated a solute in a Lennard-Jones solvent
semiclassically, simplifying matters by neglecting the amplitude
of the semiclassical propagator. They also discussed the
shortcomings of semiclassical approaches which reduce the
correlation function to the ground or excited state dynamics of
the instantaneous energy gap.

To circumvent the difficulty associated with the oscillatory
nature of the semiclassical propagator, Makri and Thompson
formulated a FBSD scheme for ensemble-averaged quanti-
ties.44,46,47 The main idea is to apply the semiclassical ap-
proximation to the combined forward and reverse time evolution
operators. After reaching the desired propagation time, trajec-
tories are subsequently propagated back to time zero, such that
the net accumulated action is generally small. This fact implies
that the semiclassical integrand is now only mildly oscillatory,
allowing Monte Carlo sampling. Batista et al.49 have used this
scheme to simulate the photoelectron spectrum of I2

- in the
gas phase.

References 44 and 46 present in detail the FBSD scheme for
the influence functional arising from coupling of a multidimen-
sional medium to a time-dependent system. Equation 2.5 for
the correlation function pertinent to the photoabsorption spec-
trum has exactly the same structure, the forward and backward
evolution operators now involving the forces on the ground and
excited potential surfaces. For this purpose, we simply rewrite
the result of refs 44 and 46 in the present notation:

Here

H(p,q) ) Hg(p,q)|g〉〈g| + He(p,q)|e〉〈e| -
E(t)‚(µeg(q)|e〉〈g| + µge(q)|g〉〈e|) (2.1)

R(ω) ) 1
π

Re∫0

∞
dt eiωt C(t) (2.2)

C(t) ) Tr[Ue(t)µeg(q)FgUg
-1(t)‚µge(q)] (2.3)

Fg ) Z-1 exp(-âHg) (2.4)

C(t) ) Tr(Ue(t)FgUg
-1(t)) (2.5)

C(t) ) (2πp)-n ∫ dp0 ∫ dq0 D(q0,p0) ×
exp( i

p
S(q0,p0))〈G(q0,p0)|Fg|G(qf,pf)〉 (2.6)
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where γ is a diagonal matrix, defines a multidimensional
coherent state. According to eq 2.6, trajectories are chosen with
initial conditionsq0,p0 based on weights given by the coherent
state transform of the initial density operator. These trajectories
are first propagated to timet according to the ground state
Hamiltonian and subsequently return to zero time following the
forces in the excited electronic state. Finally,S is the net action
during this forward-backward evolution, i.e.

The main advantage of the FBSD formulation in the context of
propagation in a single electronic state12,13is that the combined
forward-backward action tends to be small on the scale of
Planck’s constant and thus the integrand is only mildly
oscillatory. In the present context, the extent of forward-
backward cancellation depends on how different the ground and
excited state Hamiltonians are. In the limitHg ) He, the forward
and backward propagation steps cancel exactly and the corre-
sponding action is identically equal to zero. The prefactor in
(2.6) is given by D(q0,p0) ) xdetM with the matrix M
defined in terms of the elements of the stability matrix

To calculate the determinant, one needs to solve the (2n)2

differential equations for these elements. Having in mind
applications to large systems, the quadratic scaling of this
procedure becomes the bottleneck. For this reason we will also
explore the validity of the simplest approximation in which the
correlations between initial and final phase space points of
different degrees of freedom are neglected, i.e.Mij ≈ δijMii. In
this approximation, the prefactorD is replaced byDfact )
[∏iMii]1/2.

Finally, we mention how the FBSD treatment described in
this section can be used to evaluate the dipole correlation
function without invoking the Condon approximation. For this
purpose, eq 2.5 is written in the form

The product of the three last operators in this expression can
be interpreted as propagation with the following time-dependent
Hamiltonian:45,48

The classical dynamics generated by this effective Hamiltonian
are described by Hamilton’s equations,

According to these, the momentum of each trajectory must jump

at time t by the amount

The action generated by the Hamiltonian of eq 2.11 also
increments discontinuously at the timet by the amount

Application of the semiclassical approximation to the effective
Hamiltonian in the coherent state representation brings the
correlation function to the form

III. Application to I 2 in an Ar cluster

The photodissociation of I2 in a cluster environment has been
an active testing ground for new theoretical propagation
methods. Gerber and co-workers applied their classical separable
potential based approach to this system calculating absorption
and resonance Raman spectra.76,77 A so-called mixed-order
semiclassical approach combining zeroth- and second-order
approximations to the propagator has been used by Ovchinnikov
et al. to obtain the absorption, emisson, and resonance Raman
profiles for I2 in solid Kr.70,78

Much effort has also been invested in the theoretical simula-
tion of pump-probe spectra which show a pronounced pressure
dependence.79,80 Purely classical molecular dynamics simula-
tions,79,81and quantum/classical hybrid methods,82,83as well as
the combination of quantum propagation for the early time
dynamics with classical simulations for later times84 have added
much to the understanding of the relaxation/recombination
dynamics in this system.

In this section we apply the FBSD expression for the linear
absorption correlation function to the spectroscopy of the Xf
B electronic transition of an iodine molecule embedded in a
cluster of argon atoms at finite temperature. In the absence of
detailed information for the dipole moment function we restrict
ourselves to the Condon approximation. Nonadiabatic transitions
within the I2 excited electronic state manifold do not play a
significant role for the linear absorption profile77 and therefore
will be neglected. Further, to keep the matter simple we restrict
ourselves to a linear chain configuration (see Figure 1) as has
been done for the present system in82,83 and for the I2 anion in
Ar and Xe in refs 82 and 83.

The Cartesian coordinates and momenta of the two iodine
atoms are denotedr i andpi (i ) 1, 2), respectively, while those
of the n Ar atoms are written asRj, Pj (j ) 1, ..., n). In the
actual calculation we will describe the solute by its relative (bond

G(q0,p0) ) (2π)n/4
(detγ)1/4 ×

exp(-(q - q0)‚γ‚(q - q0) + i
p
p0‚(q - q0)) (2.7)

S(q0,p0) ) ∫0

t
(p(t′)‚q3 (t′) - He) dt′ +

∫t

0
(p(t′)‚q3 (t′) - Hg) dt′ (2.8)

Mij ) 1
2(∂qj,f

∂qi,0
+

γi

γj

∂pj,f

∂pi,0
- 2ipγi

∂qj,f

∂pi,0
+ i

2pγj

∂pj,f

∂qi,0
) (2.9)

C(t) ) -i
∂

∂z
‚Tr(µeg(q)FgUg

-1(t)eiz‚µge(q)Ue(t))|z)0 (2.10)

H̃(t′) ≡ H - pz‚µδ(t′ - t) (2.11)

q3 (t′) ) ∂H̃
∂p

) ∂H
∂p

, p3 (t′) ) - ∂H̃
∂q

) - ∂H
∂q

+ p
∂µ
∂q

‚zδ(t-t′)
(2.12)

Figure 1. Linear chain configuration of I2 (large spheres) in an Ar
(small spheres) environment. The system is placed in a box introduced
via the external potentialVext(q). The latter is taken as the repulsive
part of the Ar-Ar Lennard-Jones potential thus modeling the presence
of further Ar atoms.

δp ) p
∂µ
∂q

‚z (2.13)

δS) pµ(t)‚z (2.14)

C(t) ) -i(2πp)-1 ∂

∂z
‚∫ dq0 ∫ dp0D(q0,p0) ×

exp( i
p
S(q0,p0))〈G(q0,p0)|Fgµ|G(qf,pf)〉|z)0 (2.15)
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distance) and center of mass coordinatesr̃ andR0, respectively.
The respective conjugate momenta arep̃ andP0. Employing a
pairwise additive potential, the Hamiltonian takes the form

where

describes the internal vibration of the iodine molecule and

is the Hamiltonian of the argon atoms and their interactions
with the iodine molecule as well as the overall translation of
the latter. The ground and excited-state potentials for I2, Ar-
Ar, and the I-Ar interaction are taken from ref 79. Specifically,
the vibrational motion of I2 is described by a Morse potential
of the form

and the Ar-Ar and I-Ar interaction potentials are of the
Lennard-Jones type:

with no distinction made for the ground and excited state of I2.
The parameters of these potentials are given in Tables 1 and 2.
To mimic the effect of additional solvent atoms the system is
placed in a box of length 2Rbox (see Figure 1). For the external
box potential entering eq 3.3, we chose the repulsive part of
the Lennard-Jones potential with the parameters for the Ar-
Ar interaction.

The initial density operator is approximated by the product

whereψI2(r̃) is the wave function of the iodine molecule in the
vibrational ground state of the ground electronic state. Note that
Hsol is evaluated in eq 3.4 with the iodines fixed at their ground
state equilibrium position. For simplicity, the ground state wave
function for the solute is approximated by a Gaussian form,

where r̃eq is the equilibrium bond length.
Since the Ar atoms are fairly heavy, we use the high-

temperature approximation to calculate the solvent part of the
Boltzmann matrix element. The density matrix elements in the

coherent state representation have been given in refs 12 and
13. With these assumptions the correlation function becomes

In the above equation,Qk are auxiliary integration variables
arising from the coherent state transform of the Boltzmann
operator in the high-temperature approximation, and the normal-
ized sampling function is given by the expression

Details of the Monte Carlo procedure are discussed in ref 46.
We start our discussion by assessing the importance of

correlations in the calculation of the determinant prefactorD
in eq 3.6. In Figure 2 we plot a set of trajectories for the case
of four Ar atoms. The initial conditions have been taken from
a Monte Carlo sampling step atT ) 300 K. The solute is in the
excited state; i.e., the trajectories correspond to the forward
propagation. The elements of the stability matrix entering eq
2.9 have been calculated by running for each selected set of
initial conditions concurrent trajectories with slightly modified
initial values such as to allow for a finite difference approxima-
tion to the derivatives in (2.9). The integration of the classical
equations of motion was performed using the velocity Verlet
algorithm.85

Apparently, on the time scale covered in Figure 2 the
factorized approximation is very accurate for these trajectories.
As can be seen from the upper panel the deviation is only about
4% within the first 700 fs. Note that initially the I2 is compressed
to an extent that the energy on the excited state is above the
dissociation threshold for this bond. The initial momenta are
zero for all particles.

In Figure 3 we show a situation where the factorization
approximation completely breaks down at longer times. From
the forward trajectories propagated on the excited solute state
the reason for this break down does not become obvious.

TABLE 1: Parameters of the Morse Potential Describing
the Ground and Excited States of I2 (from Ref 79)

D (cm-1) λ (Å-1) b (Å) d (cm-1)

ground state 12547.2 1.875 2.656 0
excited state 4382.8 1.75 3.03 7605

H ) HI2
+ Hsol (3.1)

HI2
) p̃2

2µI-I
+ VI-I(r̃) (3.2)

Hsol ) ∑
i)1

n Pi
2

2mAr

+ ∑
i>j

n

VAr-Ar(|Ri - Rj|) +

∑
i)1

n

VI-Ar(|r1 - Ri|) + ∑
i)1

n

VI-Ar(|r2 - Ri|) +
P0

2

4m1

+

Vext(R0...Rn) (3.3)

VI-I(r̃) ) D[exp(-2λ(r̃ - b)) - 2 exp(-λ(r̃ - b))] + d

VLJ(δR) ) 4ε[( σ
δR)12

- ( σ
δR)6]

F(0) ≈ exp(-âHsol)|ψI2
〉〈ψI2

| (3.4)

ψI2
(r̃) ) (2R

π )1/4
exp{-R(r̃ - r̃eq)

2} (3.5)

C(t) ) 23(n+2)∏
k)1

n ∫ dRk,0 ∫ dPk,0 ∫ dQk ∫ dr1,0∫ ×

dp1,0∫ dr2,0∫ dp2,0 D(r1,0,p1,0,r2,0,p2,0,Rk,0,Pk,0) ×
fnorm(r1,0,p1,0,r2,0,p2,0,Rk,0,Pk,0,Qk) ×

exp( i

p
S(r1,0,p1,0,r2,0,p2,0,Rk,0,Pk,0)) ×

exp(-∑
k)1

n mk

mk + p2âγk
( â

4mk

Pk,f
2 + γk|Qk - Rk,f|2 +

i

p
Qk‚(Pk,0 - Pk,f) -

i

p
(Pk,0‚Rk,0 - Pk,f‚Rk,f))) ×

exp(-
Rγ0

R+γ0
|r̃ f - r̃eq|2 -

p̃f
2

4(R+γ0)
-

i

p

R

R+γ0

×

(p̃0‚(r̃0 - r̃eq) - p̃f‚(r̃ f - r̃eq))) (3.6)

fnorm(r1,0,p1,0,r2,0,p2,0,Rk,0,Pk,0,Qk) )

exp(-∑
k)1

n mk

mk + p2âγk
( â

4mk

Pk,0
2 + γk|Qk - Rk,0|2) -

Rγ0

R+γ0
|r̃0 - r̃eq|2 -

p̃0
2

4(R+γ0)) (3.7)
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However, if one inspects the complete forward-backward
trajectory as is done for the final time (700 fs) in the lower
panel of Figure 3, the reason for the failure of the factorization
approximation becomes transparent. Tracing their backward
motion on the I2 ground state, one observes an intramolecular
I2 collision and the attraction between an iodine and a neighbor-
ing Ar atom. These cause the final phase space points of the
involved particles to become correlated, in contrast to the case
shown in Figure 2 where the backward ground state trajectory
traced the forward trajectory almost exactly for a final time of
700 fs. Figure 3 also suggests that one can improve the
factorization approximation by including correlations between
neighboring particles, for instance, those in the first solvation
shell surrounding the solute. In this case the matrix (2.9) would
take a block-diagonal form; the resulting ratio|Dapprox|/|Dexact|
is shown as the dashed line in the upper panel of Figure 3.
Including also the next-nearest-neighbor interaction with the
Argon atom whose trajectory starts at about-8 Å accounts for
most of the correlations in the time interval examined (thin solid
line in upper panel of Figure 3).

The broad absorption spectrum of I2 is dominated by the
short-time dynamics of the system. As shown, for example, in
ref 39, the ground state wave packet once promoted to the

excited state leaves the Franck-Condon region in about 15 fs.
On this time scale the factorization approximation should
perform rather well, judging from the two extreme cases shown
in Figures 2 and 3. In Figure 4 we plot the correlation function
for the I2 plus four Ar atoms system using the factorized
determinant. For each integration variable in eq 3.6 35 000
Monte Carlo points have been sampled with a rejection ratio
for the Metropolis random walk of 50%. It turns out that the
correlation function is nearly identical to the gas phase result
which has been obtained by calculating the overlap〈ψI2|exp-
(-iHet/p)|ψI2〉 using the standard split-operator technique in

Figure 2. Classical trajectories and semiclassical prefactor for a linear
chain of I2 plus four Ar atoms. The solute dynamics is on the excited
state (forward propagation). The external confining potential starts at
Rbox ) 14.6 Å. This corresponds to the situation where for I2 in the
ground state the equilibrium I-Ar and Ar-Ar distances are equal to
the Lennard-Jones minimum 21/6σ. The initial conditions for the
trajectories are taken from an arbitrary step in the Monte Carlo sampling
of the integrals in eq 3.6. With this initial condition the forward and
backward parts of the trajectories are nearly indistinguishable. The lower
panel shows the coordinates of the I atoms (solid lines) and those of
the Ar atoms (dashed lines). The upper panel shows the ratio between
the absolute values of the factorized and the exact determinant.

TABLE 2: Parameters of the Lennard-Jones Potentials
Describing the I-Ar and Ar -Ar Interactions (from Ref 79)

ε (cm-1) σ (Å)

I-Ar 209.7 3.59
Ar-Ar 84.0 3.40

Figure 3. Same as in Figure 2 but for a different set of initial
conditions. In addition to the forward trajectories on the I2 excited state,
the backward parts of the trajectories on the ground states are shown
for the longest forward propagation time. The respective directions are
indicated by arrows. In the upper panel the determinant for the full
factorization (thick solid line) and block diagonal approximation
(dashed: only first solvation shell; thin solid: additional inclusion of
the argon whose trajectory starts at about-8 Å) is compared to the
exact determinant according to eq 2.9.

Figure 4. Comparison between the exact gas phase (solid line) and
the FBSD condensed phase results (markers) for the correlation function
of the X f B state Franck-Condon transition at room temperature.
The triangles show the real and imaginary parts of the correlation
function. The inset shows the spectrum taken with respect to the vertical
transition frequencyω0.
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conjunction with a fast Fourier transform scheme for calculating
the action of the kinectic energy operator.86 This finding is in
line with the fact that the spectrum is determined by the short-
time dynamics in the Franck-Condon region where the gas
phase potentials are not substantially altered by the interaction
with the rare gas environment.

IV. Summary

The FBSD scheme for calculating correlation functions offers
a straightforward and practical methodology for studying the
dynamics and spectroscopy of polyatomic molecules and
clusters. In the Condon approximation, the correlation function
for the linear absorption spectrum involves a time evolution on
the excited potential surface followed by reverse propagation
on the ground state Hamiltonian. Combining both steps into a
single semiclassical evolution eliminates the most severe
oscillations of each separate semiclassical propagator, giving
rise to a smooth integrand that invites the use of Monte Carlo
methods. We have also discussed how the scheme can be
formulated without reference to the Condon approximation.
Furthermore, combination of the FBSD idea a stationary phase
state switching procedure72-75 will lead to a powerful methodol-
ogy for simulating nonlinear spectroscopies.

In the present paper we applied the FBSD procedure to
calculate the absorption spectrum for the Xf B transition of
iodine embedded in a cluster of four argon atoms in a linear
arrangement. In this case the spectrum is dominated by the short
time dynamics of I2, which dissociates very rapidly once
promoted to the excited B surface. As a consequence, the
interaction with the Ar environment plays a minor role in
determining the spectrum. Nevertheless, the present results
obtained via the full semiclassical method are useful as
benchmarks since the present system continues to serve as a
testing ground for less rigorous approximations. It will be
challenging to apply the FBSD methodology to other situations
where persisting recurrences in the correlation function give rise
to vibrational structure, while interaction with the medium
results in line-shape broadening.

As the FBSD methodology reduces dramatically the severity
of the Monte Carlo sign problem encountered in path integral
or single-direction semiclassical treatments, the major compu-
tational overhead of the method is associated with the deter-
minant prefactor. The latter requires costly propagation of the
stability matrix as well as the evaluation of a determinant that
scales as the third power of the number of degrees of freedom.
In the present work we explored a few ways of simplifying this
procedure. Full factorization of the determinant leads to an
extremely efficient algorithm that reproduces the short-time
dynamics rather faithfully. At longer times binary collisions
become important and the factorization scheme breaks down.
We found that following the full stability matrix of the solute
plus one solvation shell leads to significant improvement while
resulting in an economical block-diagonal form. Finally, we
expect that inclusion of off-diagonal terms between neighboring
atoms only will offer further increase in accuracy at little
additional cost, as the resulting stability matrix will be tridi-
agonal. These procedures offer a promising starting point but
further tests will be needed to establish the most fruitful
approach to the semiclassical dynamics of polyatomic systems.
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(59) Cao, J.; Voth, G. A.J. Chem. Phys.1994, 100, 5106.
(60) Cao, J.; Voth, G. A.J. Chem. Phys.1994, 101, 6157.
(61) Voth, G. A.AdV. Chem. Phys.1996, XCIII, 135.
(62) Gerber, R. B.Chem. ReV. 1999, 99, 1583-1606.
(63) Makri, N. AdV. Chem. Phys.1999.
(64) Makri, N. Comput. Phys. Commun.1991, 63, 389-414.
(65) Mukamel, S.Principles of nonlinear optical spectroscopy; Oxford

University Press: New York, 1995.
(66) Feynman, R. P.; Hibbs, A. R.Quantum Mechanics and Path

Integrals; McGraw-Hill: New York, 1965.
(67) Schulman, L. S.Techniques and applications of path integration;

John Wiley and Sons: New York, 1981.
(68) Batista, V. S.; Miller, W. H.J. Chem. Phys.1998, 108, 498-510.
(69) Sun, X.; Miller, W. H.J. Chem. Phys.1997, 106, 916-927.
(70) Ovchinnikov, M.; Apkarian, V. A.J. Chem. Phys.1997, 105, 10312.
(71) Ovchinnikov, M.; Apkarian, V. A.J. Chem. Phys.1998, 108, 2277-

2284.
(72) Sepulveda, M. A.; Mukamel, S.J. Chem. Phys.1995, 102, 9327-

9344.
(73) Sepulveda, M. A.; Grossmann, F.AdV. Chem. Phys.1996, XCVI,

191.
(74) Spencer, C. F.; Loring, R. F.J. Chem. Phys.1996, 105, 6596.

(75) Pentidis, S. A.; Loring, R. F.Chem. Phys. Lett.1998, 287, 217.
(76) Jungwirth, P.; Fredj, E.; Gerber, R. B.J. Chem. Phys.1996, 104,

9332-9339.
(77) Jungwirth, P.; Fredj, E.; Gerber, R. B.J. Chem. Phys.1997, 107,

8963.
(78) Ovchinnikov, M.; Apkarian, V. A.J. Chem. Phys.1997, 106, 5775-

5778.
(79) Potter, E. D.; Liu, Q.; Zewail, A. H.Chem. Phys. Lett.1992, 200,

605.
(80) Wan, C.; Gupta, M.; Baskin, J. S.; Kim, Z. H.; Zewail, A. H.J.

Chem. Phys.1997, 106, 4353-4356.
(81) Whitnell, R. M.; Wilson, K. R.; Yan, Y.; Zewail, A. H.J. Mol.

Liq. 1994, 61, 153-165.
(82) Liu, L.; Guo, H.J. Chem. Phys.1995, 103, 7851.
(83) Ka, J.; Shin, S.Chem. Phys. Lett.1997, 269, 227.
(84) Yan, Y.; Whitnell, R. M.; Wilson, K. R.Chem. Phys. Lett.1992,

193, 402-412.
(85) Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R.J.

Chem. Phys.1982, 76, 637.
(86) Feit, M. D.; Fleck, J. A.; Steiger, A.J. Comput. Phys.1982, 47,

412.

Calculation of Spectral Line Shapes J. Phys. Chem. A, Vol. 103, No. 47, 19999493


